New therapeutic perspectives – amyloid removal
نویسنده
چکیده
Background In systemic amyloidosis, disease is caused by extracellular accumulation of amyloid fibrils which, unlike other interstitial debris, are not cleared and which disrupt tissue structure and function. Direct removal of amyloid deposits is required to preserve and possibly restore tissue and organ function. We are targeting serum amyloid P component (SAP) for this purpose. SAP normal plasma protein is a normal plasma protein which binds to all amyloid fibrils and is thus always present in all human amyloid deposits. Administration of hexanoyl bis (D–proline) (CPHPC) swiftly depletes circulating SAP but leaves some SAP in amyloid deposits as an amyloidspecific antigen target. In human SAP transgenic mice with systemic AA amyloidosis, CPHPC treatment, to deplete human SAP from the plasma, followed by a single dose of anti-human SAP antibodies produced swift, almost complete, clearance of visceral amyloid (Bodin et al. Nature, 2010;468:93-7). In a mouse SAA transgenic systemic amyloidosis model, which uniquely includes cardiac amyloid, a second dose of anti–SAP antibody, after the first dose had eliminated massive liver and spleen deposits, significantly removed amyloid from the heart (Simons et al. Proc Natl Acad Sci USA. 2013;110:1611520). Amyloid clearance by anti-SAP antibody required classical complement pathway activation and macrophages. Amyloid destruction was mediated by multinucleated giant cells (MGCs), formed by macrophage fusion. MGCs have abundant surface membrane ruffles, enabling the engulfment of very large complement opsonised amyloid targets which were then swiftly destroyed within phagolysosomes. Amyloid clearance was maximal by 14 days. No ill effects were detected. After licensing this new treatment in February 2009, GlaxoSmithKline (GSK) fully humanised our optimal mouse monoclonal anti-SAP antibody and prepared for the first in human clinical study that started in June 2013. We have lately reported that a single dose of humanized monoclonal anti-SAP antibody, following depletion of circulating SAP by CPHPC, substantially reduced the amyloid load, especially from the liver, in patients with systemic AL, AA and AApoAI amyloidosis, (Richards et al, New Engl J Med, July 15 2015; DOI: 10.1056/NEJMoa1504942).
منابع مشابه
Newly Designed Magnetic and Non-Magnetic Nanoparticles for Potential Diagnostics and Therapy of Alzheimer’s Disease
The pathogenesis of many neurodegenerative diseases, including Alzheimer’s disease (AD) is characterized by protein aggregation into amyloid fibrils. In AD, the fibrils are of the amyloid-β (Aβ) peptide. The development of new approaches based on nanotechnology for early detection and potential treatment of AD is of high current interest. This review describes a pioneering approach involving th...
متن کاملPassive Immunization against Pyroglutamate-3 Amyloid-β Reduces Plaque Burden in Alzheimer-Like Transgenic Mice: A Pilot Study
BACKGROUND N-terminally truncated and modified pyroglutamate-3 amyloid-β protein (pE3-Aβ) is present in most, if not all, cerebral plaque and vascular amyloid deposits in human Alzheimer's disease (AD). pE3-Aβ deposition is also found in AD-like transgenic (tg) mouse brain, albeit in lesser quantities than general Aβ. pE3-Aβ resists degradation, is neurotoxic, and may act as a seed for Aβ aggre...
متن کاملNovel Immunotherapeutic Procedures for Prevention of Alzheimer’s Disease
There are consistent reasons why immunotherapy should work in AD [5], based on studies published during the past decade. Some of these reasons are: (a) β-amyloid plaques and their aggregated, protofibrillar and oligomeric precursors contain immunologic neo-epitopes that are absent from the full-length Amyloid Precursor Protein (APP), as well as from its soluble proteolytic derivatives restricte...
متن کاملTherapeutic options in systemic AL amyloidosis.
Systemic amyloid light chain (AL) amyloidosis is a severe disease with unfavourable prognosis. Since the late 1970s different therapeutic modalities in AL amyloidosis have been investigated, trying to prolong survival. This review deals with the therapeutic modalities in AL amyloidosis to date, and highlights future perspectives.
متن کاملInhibition of Amyloid Fibrils Formation from Hen Egg White Lysozyme by Satureia Hortensis Extract and its Effect on Learning and Spatial Memory of Rats
Background & Aims: Alzheimer's disease is a neurodegenerative disorder characterized by the abnormal aggregation of amyloid-β plaques in the brain. Although several studies have been done for finding effective medicines in the treatment of this disease, a drug that inhibits amyloid β aggregation and ameliorates the disorder has not been approved so far. One important therapeutic approach is use...
متن کامل